Metabolic Alterations Identified in Urine, Plasma and Aortic Smooth Muscle Cells Reflect Cardiovascular Risk in Patients with Programmed Coronary Artery Bypass Grafting

dc.contributor.authorSantiago Hernández, Aranzazu
dc.contributor.authorMartínez, Paula J.
dc.contributor.authorAgudiez, Marta
dc.contributor.authorHeredero, Angeles
dc.contributor.authorGonzález Calero, Laura
dc.contributor.authorYuste Montalvo, Alma
dc.contributor.authorEsteban, Vanesa
dc.contributor.authorAldamiz Echevarria, Gonzalo
dc.contributor.authorMartin Lorenzo, Marta
dc.contributor.authorÁlvarez Llamas, Gloria
dc.date.accessioned2021-09-07T08:23:52Z
dc.date.available2021-09-07T08:23:52Z
dc.date.created2021-08-27
dc.description.abstractAtherosclerosis is the predominant pathology associated to premature deaths due to cardiovascular disease. However, early intervention based on a personalized diagnosis of cardiovascular risk is very limited. We have previously identified metabolic alterations during atherosclerosis development in a rabbit model and in subjects suffering from an acute coronary syndrome. Here we aim to identify specific metabolic signatures which may set the basis for novel tools aiding cardiovascular risk diagnosis in clinical practice. In a cohort of subjects with programmed coronary artery bypass grafting (CABG), we have performed liquid chromatography and targeted mass spectrometry analysis in urine and plasma. The role of vascular smooth muscle cells from human aorta (HA-VSMCs) was also investigated by analyzing the intra and extracellular metabolites in response to a pro-atherosclerotic stimulus. Statistically significant variation was considered if p value < 0.05 (Mann-Whitney test). Urinary trimethylamine N-oxide (TMAO), arabitol and spermidine showed higher levels in the CVrisk group compared with a control group; while glutamine and pantothenate showed lower levels. The same trend was found for plasma TMAO and glutamine. Plasma choline, acetylcholine and valine were also decreased in CVrisk group, while pyruvate was found increased. In the secretome of HA-VSMCs, TMAO, pantothenate, glycerophosphocholine, glutathion, spermidine and acetylcholine increased after pro-atherosclerotic stimulus, while secreted glutamine decreased. At intracellular level, TMAO, pantothenate and glycerophosphocholine increased with stimulation. Observed metabolic deregulations pointed to an inflammatory response together with a deregulation of oxidative stress counteraction. Keywords: cardiovascular risk; atherosclerosis; chronic kidney disease; vascular smooth muscle cells; oxidative stress; metabolites; metabolomics; biomarkerses_ES
dc.formatapplication/pdfes_ES
dc.identifier.locationN/Aes_ES
dc.identifier.urihttps://hdl.handle.net/20.500.12080/25518
dc.languageenges_ES
dc.rightsCC-BYes_ES
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.eses_ES
dc.titleMetabolic Alterations Identified in Urine, Plasma and Aortic Smooth Muscle Cells Reflect Cardiovascular Risk in Patients with Programmed Coronary Artery Bypass Graftinges_ES
dc.typeinfo:eu-repo/semantics/articlees_ES

Files

Collections